Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 130(11): 5703-5720, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32721946

ABSTRACT

Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.


Subject(s)
Arginase/metabolism , Gastrointestinal Microbiome , Hyperargininemia , Inflammatory Bowel Diseases , Metabolome , Animals , Arginase/genetics , Arginine/genetics , Arginine/metabolism , Endothelial Cells/enzymology , Endothelial Cells/pathology , Hematopoietic Stem Cells/enzymology , Hematopoietic Stem Cells/pathology , Hyperargininemia/genetics , Hyperargininemia/metabolism , Hyperargininemia/microbiology , Hyperargininemia/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Mice , Mice, Knockout
2.
JCI Insight ; 4(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31484827

ABSTRACT

Deficiency of arginase is associated with hyperargininemia, and prominent features include spastic diplegia/tetraplegia, clonus, and hyperreflexia; loss of ambulation, intellectual disability and progressive neurological decline are other signs. To gain greater insight into the unique neuromotor features, we performed gene expression profiling of the motor cortex of a murine model of the disorder. Coexpression network analysis suggested an abnormality with myelination, which was supported by limited existing human data. Utilizing electron microscopy, marked dysmyelination was detected in 2-week-old homozygous Arg1-KO mice. The corticospinal tract was found to be adversely affected, supporting dysmyelination as the cause of the unique neuromotor features and implicating oligodendrocyte impairment in a deficiency of hepatic Arg1. Following neonatal hepatic gene therapy to express Arg1, the subcortical white matter, pyramidal tract, and corticospinal tract all showed a remarkable recovery in terms of myelinated axon density and ultrastructural integrity with active wrapping of axons by nearby oligodendrocyte processes. These findings support the following conclusions: arginase deficiency is a leukodystrophy affecting the brain and spinal cord while sparing the peripheral nervous system, and neonatal AAV hepatic gene therapy can rescue the defects associated with myelinated axons, strongly implicating the functional recovery of oligodendrocytes after restoration of hepatic arginase activity.


Subject(s)
Arginase/genetics , Genetic Predisposition to Disease/genetics , Hyperargininemia/genetics , Hyperargininemia/metabolism , Liver/enzymology , Liver/metabolism , Animals , Arginase/metabolism , Axons/metabolism , Axons/pathology , Central Nervous System/diagnostic imaging , Central Nervous System/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Therapy , Homozygote , Hyperargininemia/pathology , Male , Mice , Mice, Knockout , Oligodendroglia/metabolism , Transcriptome
3.
Sci Rep ; 7(1): 2585, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566761

ABSTRACT

Arginase-1 deficiency in humans is a rare genetic disorder of metabolism resulting from a loss of arginase-1, leading to impaired ureagenesis, hyperargininemia and neurological deficits. Previously, we generated a tamoxifen-inducible arginase-1 deficient mouse model harboring a deletion of Arg1 exons 7 and 8 that leads to similar biochemical defects, along with a wasting phenotype and death within two weeks. Here, we report a strategy utilizing the Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system in conjunction with piggyBac technology to target and reincorporate exons 7 and 8 at the specific Arg1 locus in attempts to restore the function of arginase-1 in induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) and macrophages in vitro. While successful gene targeted repair was achieved, minimal urea cycle function was observed in the targeted iHLCs compared to adult hepatocytes likely due to inadequate maturation of the cells. On the other hand, iPSC-derived macrophages expressed substantial amounts of "repaired" arginase. Our studies provide proof-of-concept for gene-editing at the Arg1 locus and highlight the challenges that lie ahead to restore sufficient liver-based urea cycle function in patients with urea cycle disorders.


Subject(s)
Arginase/genetics , Gene Editing , Hyperargininemia/therapy , Urea Cycle Disorders, Inborn/therapy , Animals , Arginase/therapeutic use , CRISPR-Cas Systems/genetics , Disease Models, Animal , Genetic Therapy , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Hyperargininemia/genetics , Hyperargininemia/pathology , Induced Pluripotent Stem Cells/metabolism , Liver/metabolism , Liver/pathology , Mice , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/pathology
4.
J Neurosci ; 36(25): 6680-90, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27335400

ABSTRACT

UNLABELLED: Arginase 1 deficiency is a urea cycle disorder associated with hyperargininemia, spastic diplegia, loss of ambulation, intellectual disability, and seizures. To gain insight on how loss of arginase expression affects the excitability and synaptic connectivity of the cortical neurons in the developing brain, we used anatomical, ultrastructural, and electrophysiological techniques to determine how single-copy and double-copy arginase deletion affects cortical circuits in mice. We find that the loss of arginase 1 expression results in decreased dendritic complexity, decreased excitatory and inhibitory synapse numbers, decreased intrinsic excitability, and altered synaptic transmission in layer 5 motor cortical neurons. Hepatic arginase 1 gene therapy using adeno-associated virus rescued nearly all these abnormalities when administered to neonatal homozygous knock-out animals. Therefore, gene therapeutic strategies can reverse physiological and anatomical markers of arginase 1 deficiency and therefore may be of therapeutic benefit for the neurological disabilities in this syndrome. SIGNIFICANCE STATEMENT: These studies are one of the few investigations to try to understand the underlying neurological dysfunction that occurs in urea cycle disorders and the only to examine arginase deficiency. We have demonstrated by multiple modalities that, in murine layer 5 cortical neurons, a gradation of abnormalities exists based on the functional copy number of arginase: intrinsic excitability is altered, there is decreased density in asymmetrical and perisomatic synapses, and analysis of the dendritic complexity is lowest in the homozygous knock-out. With neonatal administration of adeno-associated virus expressing arginase, there is near-total recovery of the abnormalities in neurons and cortical circuits, supporting the concept that neonatal gene therapy may prevent the functional abnormalities that occur in arginase deficiency.


Subject(s)
Arginase/therapeutic use , Genetic Therapy , Hyperargininemia/pathology , Hyperargininemia/therapy , Motor Cortex/physiology , Recovery of Function/physiology , Action Potentials/drug effects , Action Potentials/physiology , Ammonia/blood , Animals , Animals, Newborn , Arginase/genetics , Arginase/metabolism , Disease Models, Animal , Hyperargininemia/blood , In Vitro Techniques , Mice , Mice, Transgenic , Motor Cortex/cytology , Motor Cortex/ultrastructure , Nerve Net/pathology , Nerve Net/physiology , Nerve Net/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Picrotoxin/pharmacology , Sodium Channel Blockers/pharmacology , Synapses/ultrastructure , Tetrodotoxin/pharmacology
5.
Amino Acids ; 47(9): 1751-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26123990

ABSTRACT

Hyperargininemia is caused by deficiency of arginase 1, which catalyzes the hydrolysis of L-arginine to urea as the final enzyme in the urea cycle. In contrast to other urea cycle defects, arginase 1 deficiency usually does not cause catastrophic neonatal hyperammonemia but rather presents with progressive neurological symptoms including seizures and spastic paraplegia in the first years of life and hepatic pathology, such as neonatal cholestasis, acute liver failure, or liver fibrosis. Some patients have developed hepatocellular carcinoma. A usually mild or moderate hyperammonemia may occur at any age. The pathogenesis of arginase I deficiency is yet not fully understood. However, the accumulation of L-arginine and the resulting abnormalities in the metabolism of guanidine compounds and nitric oxide have been proposed to play a major pathophysiological role. This article provides an update on the first patients ever described, gives an overview of the distinct clinical characteristics, biochemical as well as genetical background and discusses treatment options.


Subject(s)
Arginase , Arginine/metabolism , Hyperargininemia , Arginine/genetics , Child, Preschool , Female , Guanidine/metabolism , Humans , Hyperammonemia/genetics , Hyperammonemia/metabolism , Hyperammonemia/pathology , Hyperammonemia/physiopathology , Hyperargininemia/genetics , Hyperargininemia/metabolism , Hyperargininemia/pathology , Hyperargininemia/physiopathology , Infant , Liver Diseases/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/physiopathology , Paraplegia/genetics , Paraplegia/metabolism , Paraplegia/pathology , Paraplegia/physiopathology , Seizures/genetics , Seizures/metabolism , Seizures/pathology , Seizures/physiopathology
6.
Clin Biochem ; 48(18): 1273-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26169240

ABSTRACT

OBJECTIVES: Biallelic mutations in the ARG1 gene result in an uncommon autosomal recessive inborn defect of the urea cycle known as hyperargininemia (OMIM #207800). ARG1 splicing mutations are not reported often, and they are probably related to a more severe phenotype than missense mutations. In this article, we describe the results of molecular studies in a young hyperargininemia patient carrying a novel splicing mutation in ARG1. DESIGN AND METHODS: Molecular analyses included PCR amplification and direct nucleotide sequencing of the ARG1 gene. RT-PCR analysis was performed to investigate the effect of the mutation in mRNA splicing and in the expression of ARG1 isoforms. RESULTS: Mutational analysis identified a novel homozygous ARG1 IVS4-1G>C point mutation in the patient's DNA. Blood leukocyte mRNA was analyzed to demonstrate the splicing defect caused by this mutation. Sequencing of ARG1 RT-PCR products allowed the characterization of a mutated transcript retaining 51-bp from intron 4. In addition, two new, alternatively spliced ARG1 transcripts lacking either exon 4 or exons 4 and 5 were identified in mRNA from the patient and from controls. CONCLUSIONS: Our results expand the mutational spectrum in hyperargininemia patients and indicate that the novel splicing mutation results in an aberrant transcript retaining intronic sequences. Two novel alternatively spliced ARG1 transcripts were also recognized.


Subject(s)
Arginase/genetics , Hyperargininemia/diagnosis , Hyperargininemia/genetics , Point Mutation , RNA, Messenger/genetics , Alternative Splicing , Base Sequence , Exons , Homozygote , Humans , Hyperargininemia/pathology , Infant , Introns , Isoenzymes/genetics , Male , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA
7.
Gene Ther ; 20(8): 785-96, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23388701

ABSTRACT

Complete arginase I deficiency is the least severe urea cycle disorder, characterized by hyperargininemia and infrequent episodes of hyperammonemia. Patients suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation and seizures, and is associated with intellectual disability. In mice, onset is heralded by weight loss beginning around day 15; gait instability follows progressing to inability to stand and development of tail tremor with seizure-like activity and death. Here we report that hyperargininemic mice treated neonatally with an adeno-associated virus (AAV)-expressing arginase and followed long-term lack any presentation consistent with brain dysfunction. Behavioral and histopathological evaluation demonstrated that treated mice are indistinguishable from littermates, and that putative compounds associated with neurotoxicity are diminished. In addition, treatment results in near complete resolution of metabolic abnormalities early in life; however, there is the development of some derangement later with decline in transgene expression. Ammonium challenging revealed that treated mice are affected by exogenous loading much greater than littermates. These results demonstrate that AAV-based therapy for hyperargininemia is effective and prevents development of neurological abnormalities and cognitive dysfunction in a mouse model of hyperargininemia; however, nitrogen challenging reveals that these mice remain impaired in the handling of waste nitrogen.


Subject(s)
Arginase/genetics , Genetic Therapy , Hyperargininemia/genetics , Nervous System Diseases/genetics , Neurodegenerative Diseases/genetics , Animals , Arginase/metabolism , Dependovirus , Disease Models, Animal , Humans , Hyperammonemia/genetics , Hyperammonemia/pathology , Hyperammonemia/therapy , Hyperargininemia/pathology , Hyperargininemia/therapy , Mice , Mice, Transgenic , Nervous System Diseases/pathology , Nervous System Diseases/therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy
8.
Nutrition ; 27(11-12): 1168-71, 2011.
Article in English | MEDLINE | ID: mdl-21482070

ABSTRACT

OBJECTIVE: Dietary-supplemented arginine has been shown to have positive effects on cardiovascular disease, but several drawbacks exist and could potentially be avoided by using L-citrulline, since it is recycled to L-arginine. However, citrulline is very rapidly metabolized. We therefore developed a sustained-release form of citrulline and evaluated its metabolic behavior in rats. METHODS: Male Sprague Dawley rats were divided into three groups: receiving "empty microcapsule" (control group), 1 g/kg/d immediate-release citrulline (IR citrulline group), or 1 g/kg/d sustained-release citrulline (SR citrulline group). Citrulline was given each day at 9 a.m. after blood samples for 9 d, and on day 10, blood samples were drawn every 4 h to study the decrease in plasma amino acid concentrations. RESULTS: SR citrulline led to a sustained increase in citrullinemia and argininemia compared to IR citrulline, and on day 6 argininemia was significantly (P < 0.01) higher with SR compared to IR citrulline. Moreover, argininemia was significantly higher in the SR citrulline group than in controls throughout the study and SR citrulline maintained high argininemia and citrullinemia, at least over 12 h. CONCLUSION: This experimental study provides a strong rationale for using this new formulation for atherosclerosis treatment.


Subject(s)
Arginine/blood , Citrulline/administration & dosage , Citrulline/blood , Dietary Supplements , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/pathology , Delayed-Action Preparations/metabolism , Dose-Response Relationship, Drug , Hyperargininemia/drug therapy , Hyperargininemia/pathology , Male , Nitric Oxide/biosynthesis , Rats , Rats, Sprague-Dawley
9.
Brain Dev ; 33(1): 45-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20456883

ABSTRACT

Neuropathology and neuroimaging of long-term survival cases of arginase deficiency are rarely reported. The magnetic resonance imaging (MRI) of our case showed severe multicystic white matter lesions with cortical atrophy, which were more severe compared with previous reports. In this patient, low-protein diet successfully reduced hyperammonemia, but hyperargininemia persisted. These severe neurological and MRI findings may be explained by a compound heterozygote, inheriting both of severe mutant alleles from her parents.


Subject(s)
Hyperargininemia/genetics , Hyperargininemia/pathology , Magnetic Resonance Imaging/methods , Mutation , Nerve Fibers, Myelinated/pathology , Adult , Atrophy/pathology , Brain/pathology , Dietary Proteins/adverse effects , Female , Humans , Hyperammonemia/blood , Hyperammonemia/diet therapy , Hyperammonemia/pathology , Hyperammonemia/physiopathology , Hyperargininemia/blood , Hyperargininemia/physiopathology
10.
Mol Genet Metab ; 100 Suppl 1: S31-6, 2010.
Article in English | MEDLINE | ID: mdl-20176499

ABSTRACT

The paucity of hyperammonemic crises together with spasticity, only seen in human arginase I deficient patients and not in patients with other urea cycle disorders, forces a search for candidates other than ammonia to associate with the pathophysiology and symptomatology. Therefore, we determined arginine together with some catabolites of arginine in blood and cerebrospinal fluid of these patients as well as in extremely rare post-mortem brain material of two patients with argininemia. The levels of alpha-keto-delta-guanidinovaleric acid, argininic acid and alpha-N-acetylarginine correlate with the arginine levels in blood and cerebrospinal fluid of patients with imposed or spontaneous protein restriction. The levels in blood are higher than the upper limit of normal in all studied patients. In addition to the highly increased levels of these same compounds in blood of a child with argininemia, the increase of guanidinoacetic acid, 24h before death, is remarkable. However, the manifest increases of these studied catabolites of arginine are not seen in post-mortem brain material of the same pediatric patient. Otherwise a clear increase of guanidinoacetic acid in post-mortem brain material of an adult patient was shown. A similar, comparable increase of homoarginine in both studied post-mortem brain materials is observed. Therefore the study of the pathobiochemistry of arginine in argininemia must be completed in the future by the determination of the end catabolites of the nitric oxide and agmatine biosynthesis pathways in the knockouts as well as in the patients to evaluate their role, together with the here studied catabolites, as candidates for association with pathophysiology and symptomatology.


Subject(s)
Brain/pathology , Guanidines/blood , Guanidines/cerebrospinal fluid , Hyperargininemia/blood , Hyperargininemia/cerebrospinal fluid , Adolescent , Adult , Autopsy , Child , Child, Preschool , Follow-Up Studies , Humans , Hyperargininemia/pathology , Male , Multiple Organ Failure/blood , Multiple Organ Failure/cerebrospinal fluid , Multiple Organ Failure/complications , Time Factors , Urea/blood , Young Adult
11.
Pediatr Neurol ; 42(1): 49-52, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20004862

ABSTRACT

Individuals with a proximal urea cycle disorder, such as carbamoyl phosphate synthetase deficiency 1 or ornithine transcarbamylase deficiency, may present with encephalopathy resulting from hyperammonemia. The clinical presentation of arginase deficiency is considerably different, characterized by progressive spasticity involving the lower extremities and usually dementia. Diagnosis may be delayed, and patients are often thought to have cerebral palsy. The true etiology of brain injury in arginase deficiency is unknown, but is not thought to be due to hyperammonemia and brain swelling, the mechanism of injury recognized in ornithine transcarbamylase deficiency. Elevated arginine could augment nitric oxide synthesis, leading to oxidative damage. The hypothesis for the present study was that specific brain vulnerability in arginase deficiency would involve microstructural alterations in corticospinal tracts and that this finding, as measured by diffusion tensor imaging, would differ from age-matched control subjects and those with ornithine transcarbamylase deficiency. Diffusion tensor imaging data were compared for a 17-year-old male patient with arginase deficiency, age-matched normal control subjects, and age-matched individuals with ornithine transcarbamylase deficiency. Significant differences were found in suspected areas of interest, specifically in the corticospinal tracts. This finding confirms the hypothesis that the mechanism of injury in arginase deficiency, although still unknown, is unlikely to be similar to that causing ornithine transcarbamylase deficiency.


Subject(s)
Hyperargininemia/pathology , Pyramidal Tracts/pathology , Adolescent , Anisotropy , Brain/pathology , Diffusion Tensor Imaging , Female , Humans , Male , Ornithine Carbamoyltransferase Deficiency Disease/pathology , Young Adult
12.
J Inherit Metab Dis ; 32 Suppl 1: S175-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19381865

ABSTRACT

UNLABELLED: Hyperargininaemia is a rare inborn error of metabolism due to a defect in the final step of the urea cycle. Infantile onset is the most common presentation with recurrent vomiting and psychomotor delay associated with spastic paraparesis; chronic hyperammonaemia is often overlooked. Neonatal and early-onset presentations are very uncommon and their clinical course not well-described. We report on a 3-week-old hyperargininaemic girl who presented with neurological deterioration associated with liver failure and 47-day ammonia intoxication before diagnosis could be made and treatment started. Despite appropriate but delayed treatment, our patient exhibited severe psychomotor delay at age 1 year. CONCLUSION: Early identification and management of this rare but potentially treatable affection is crucial as delayed management may result in poor neurological outcome.


Subject(s)
Hyperargininemia/diagnosis , Age of Onset , Delayed Diagnosis , Diet, Protein-Restricted , Early Diagnosis , Female , Humans , Hyperargininemia/complications , Hyperargininemia/pathology , Infant , Infant, Newborn , Psychomotor Disorders/etiology
13.
Am J Med Genet C Semin Med Genet ; 142C(2): 113-20, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16602094

ABSTRACT

The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Urea cycle disorders are a group of inborn errors of hepatic metabolism that often result in life threatening hyperammonemia and hyperglutaminemia. Deficiencies of all of the enzymes of the cycle have been described and although each specific disorder results in the accumulation of different precursors, hyperammonemia and hyperglutaminemia are common biochemical hallmarks of these disorders. Arginase is the enzyme involved in the last step of the urea cycle. It catalyzes the conversion of arginine to urea and ornithine. The latter reenters the mitochondrion to continue the cycle. Hyperargininemia is an autosomal recessive disorder caused by a defect in the arginase I enzyme. Unlike other urea cycle disorders, this condition is not generally associated with a hyperammonemic encephalopathy in the neonatal period. It typically presents later in childhood between 2 and 4 years of age with predominantly neurological features. If untreated, it progresses with gradual developmental regression. A favorable outcome can be achieved if dietary treatment and alternative pathway therapy are instituted early in the disease course. With this approach, further neurological deterioration is prevented and partial recovery of skills ensues. Early diagnosis of this disorder through newborn screening programs may lead to a better outcome. This review article summarizes the clinical characterization of this disorder; as well as its biochemical, enzymatic, and molecular features. Treatment, prenatal diagnosis and diagnosis through newborn screening are also discussed.


Subject(s)
Hyperargininemia/enzymology , Hyperargininemia/pathology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...